This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography \& Related Technologies
 Publication details, including instructions for authors and subscription information:
 http://www.informaworld.com/smpp/title \sim content=t713597273
 High Performance Liquid Chromatography of New Potential Anxiolytic Drugs and Related Benzodiazepines: A Comparative Study of Hydrophobicity

M. Soledad Gila ${ }^{\text {a }}$; Carmen Ochoa ${ }^{\text {á; }}$ Salvador Vega ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute de Química Médica Juan de la Cierva, Madrid, Spain

To cite this Article Gil, M. Soledad, Ochoa, Carmen and Vega, Salvador(1991) 'High Performance Liquid Chromatography of New Potential Anxiolytic Drugs and Related Benzodiazepines: A Comparative Study of Hydrophobicity', Journal of Liquid Chromatography \& Related Technologies, 14: 11, 2141 - 2156
To link to this Article: DOI: 10.1080/01483919108049680
URL: http://dx.doi.org/10.1080/01483919108049680

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY OF NEW POTENTIAL ANXIOLYTIC DRUGS AND RELATED BENZODIAZEPINES: A COMPARATIVE STUDY OF HYDROPHOBICITY

M. SOLEDAD GIL, CARMEN OCHOA, AND SALVADOR VEGA
Instituto de Quínica Médica
Juan de la Cierva, 3
28006 Madrid, Spain

ABSTRACT

A comparative study of hydrophobicity in diazepam (5) chlordizepoxide (6), buspirone (7) and four related pyrrolothieno-1,4-dizepine systems (1-4) has been carried out, using HPLC (RPC) technique. The capacity factors (K^{\prime}) of compounds studied have been measured in five different elution conditions (mobile phase in which the percentage of methanol varies). The capacity factors (K^{\prime} 。) corresponding to the absence of organic solvent in the mobile phase have been calculated. Correlations among hydrophobic parameters of series 1, 2, 3, and 4 have been established and K^{\prime} o of compounds not yet synthesized have been calculated.

INTRODUCTION

Since the introduction of 1,4 -benzodiazepines as anxiolytic drugs many efforts have been carried out to find new active related compounds. ${ }^{1}$ The addition of a ring to the "classical" ben-

4
a $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$
g $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}-p$
b $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{O}$
h $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3}-\left(\mathrm{OCH}_{3}\right)_{2}(3,4)$
c $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Cl}-m$
d $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Cl}-\mathrm{p}$
e $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}_{2}-\mathrm{p}$
i $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{OCH}_{2} \mathrm{O}-(3,4)$
j $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NHCOCH}_{3}-\mathrm{p}$
k $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{p}$
f $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OCH}_{3}-\mathrm{m}$

7
sCheme
zodiazepine system and the replacement of the benzene ring by an heterocycle are found among the useful structural manipulations carried out. ${ }^{2}$ Following these guidelines, we have synthesized ${ }^{3.4}$ and tested as anxiolytic agents four series of compounds $1,2,3$, 4 belonging to two pyrrolothieno-1,4-diazepine systems.

The influence of hydrophobicity of drugs on their "in vivo" pharmacological activities is well known. ${ }^{5.6}$ For this reason we have carried out a comparative study of the hydrophobic character of compounds of the series 1-4, using as standard anxiolytic drugs diazepam (5), chlordiazepoxide (6) and buspirone (7) (see scheme).

Reversed-phase HPLC is a useful technique to determine hydrophobicity of drugs ${ }^{7}$ and the retention time parameter $\log K^{\prime}$ has been correlated with the classical octanol-water partition coefficient $\log \mathbf{P . 8 , 8}$ Retention in HPLC has also been correlated directly with biological activity. ${ }^{\mathbf{B} \cdot 10.11}$ It has been suggested hydrophobic parameters in HPLC are correlated better than $\log \mathrm{P}$ with biological activity due to the similarity between HPLC process and the behaviour of a solute through bilipid layer membranes.

In this work we have measured the capacity factors (K^{\prime}) of series 1-4 and standards at different concentrations of organic solvent, using reversed-phase HPLC and calculated the capacity factors (K^{\prime} 。) in absence of organic solvent.

MATERIAL AND METHODS

Materials

High performance liquid chromatography grade methanol was obtained from E.M. Merck Co. and reagent grade water was generated by a Millipore Milli-Q Water purification system. Diazepam, chlordiazepoxide and buspirone were obtained from Prodes, Roche and Bristol Mayers, S.A.E. companies, respectively.

Compounds of series 1^{3} and 4^{4} were synthesized by reported methods and compounds of series 2 and 3 were prepared by synthetic methods which will be described elsewhere.

Chromatography

HPLC was performed on a Waters HPLC system consisting of a 6000A solvent delivery system and a U6K injector. The compounds studied on this system were detected by a Waters $440 \mathrm{ab}-$ sorbance spectrophotometric detector at 254 nm . Retention data were collected by a Waters 730 Data module at a rate of 0.5 cm./min.

For analysis a Hibare μ-Bondapack $\mathrm{C}-18$ column at $25^{\circ} \mathrm{C}$ was used. Mobile phase consisted of mixtures of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ buffer solutions at $65 \%, 70 \%, 75 \%, 80 \%$ and 85% (v/v), at a flow rate of $0.9 \mathrm{ml} / \mathrm{min}$.

Phosphate buffer has been reported to cause the least deviation from octanol-water values. ${ }^{12}$ The mobile phase solutions were used with a $0.025 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffer that had been adjusted to an apparent pH of 7.0 after the $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ had been added.

The capacity factors (K^{\prime}) of compounds studied were determined from the observed retention time (Tr) and the retention time (T_{o}) of uracile, as unretained compound,

$$
\begin{equation*}
K^{\prime}=\frac{T r-T_{o}}{T_{o}} \tag{1}
\end{equation*}
$$

Methods

Compounds were dissolved in methanol at a concentration of $250 \mu \mathrm{~g} / \mathrm{ml}$. Then they were injected separate from each other. The experiments were carried out four times and the mean value of the retention time was obtained for each compound.

RESULTS AND DISCUSSION

Test compounds and standards were chromatographed under a variety of conditions in which the percentage of methanol in the
mobile phase varied from 85% to 65% and the apparent pH was always kept at physiologic value 7.0. Experiments with lower percentage of methanol than 65% afforded experimental retention times too long to be measured, mainly in series 1 .

Standards are weak bases (pKa of $5=3.50,{ }^{13} \mathrm{pKa}$ of $6=$ 4.76^{13} and pKas of $7=4.12$ and 7.32^{14}). Thus, at $\mathrm{pH}=7$ the percentage of unionized form is higher than 99% for 5 and 6 and -50% for 7 and sufficient amount of neutral form can be eluted. Althoug pKa values of compounds of series 1-4 were not measured, they are probably weak bases too, since they were easily eluted at pH 7. The measured retention times (Tr) and capacity factors (K^{\prime}) of test compounds and standards are gathered in Tables 1-4.

The K^{\prime} values of the four series and standards decrease linearly with increasing methanol percentage of mobile phase (figures 1-4). The data of correlation equations found for $\log \mathrm{K}^{\prime}$ vs \% MeOH (least squares) are shown in Tables $5-8$. Intercepts represent the corresponding capacity factors in absence of organic solvent, $\log K^{\prime}{ }_{\rho}$, which could be correlated with biological activity.

By comparing the capacity factors of the four series, the following increasing order of lipophilic character was found: $1>2>3>4$. The influence of hydrogenated hexa- and pentacycles in series 1 and 2 accounts for their high lipophilicity.
"A priori" compounds of series 4 might be better anxiolytic agents than those of series 1, 2 and 3, because they are as lipophilic as standards. However, lipophilicity is not the only factor in biological activity.

In general, in the four series, chlorinated derivatives (d, b, \mathbf{c}, in this order) behaved as the most lipophilic compounds, being e, h and j derivatives the least ones.

As usual, the substituent position dependence ($\underline{o}, \underline{m}, \underline{p}$) in lipophilicity has smaller effect than the nature of substituent
Table 1. Tabulated a values for R and HPLC measured parameters of serie 1 and standards

Comp.	65\% MeOH		70\% MeOH		75\% MeOH		80\% MeOH		85\% MeOH		$\pi(R)$
	Tr	$\log \mathrm{K}^{\prime}$	Tr	$\log \mathrm{K}^{\prime}$	Tr	$\log \mathrm{K}^{\prime}$	Tr	$\log K^{\prime}$	Tr	$\log \mathrm{K}^{\prime}$	
1a	16.78	0.665	12.76	0.511	6.25	0.045	5.62	-0.058	4.12	-0.428	1.96
1b	20.20	0.761	11.55	0.454	7.75	0.208	6.19	0.026	4.26	-0.376	2.67
1 c	22.61	0.818	12.53	0.501	7.84	0.216	6.32	0.044	4.35	-0.346	2.67
1d	23.51	0.838	13.63	0.549	7.68	0.202	6.55	0.073	4.38	-0.337	2.67
1 e	14.23	0.576	9.60	0.313	6.36	0.059	5.21	-0.132	3.96	-0.494	1.68
1 f	15.65	0.628	9.70	0.348	6.00	0.115	5.61	-0.060	4.15	-0.416	1.94
19	15.71	0.630	9.80	0.354	5.76	-0.024	5.70	-0.045	4.21	-0.394	1.94
Ih	12.06	0.483	9.72	0.350	5.44	-0.077	4.98	-0.180	3.96	-0.494	1.92
1 i	15.48	0.622	12.34	0.492	6.05	0.018	5.58	-0.065	4.06	-0.452	1.91
1 j	8.98	0.303	6.34	-0.045	4.68	-0.235	4.20	-0.397	3.71	-0.625	0.99
1k	19.60	0.746	12.14	0.482	6.13	0.029	5.95	-0.007	4.60	-0.273	2.14
Uracil	2.98	-	3.00	-	2.96	-	3.00	-	3.00	-	$\log P$
5	4.93	-0.173	4.21	-0. 394	3.80	-0.547	3.53	-0.753	3.35	-0.933	2.80
6	4.61	-0.262	4.04	-0.460	3.71	-0.596	3.50	-0.778	3.36	-0.921	2.44
7	5.91	-0.007	4.82	-0.221	4.16	-0.392	3.83	-0.558	3.58	-0.714	3.43

Table 2. HPLC measured parameters of serie 2 and standards

Comp.	65\% MeOH		70\% MeOH		75\% MeOH		80\% MeOH		85\% MeOH	
	Tr	$\log K^{\prime}$	Tr	$\log K^{\prime}$	Tr	$\log \mathrm{K}^{\prime}$	Tr	$\log \mathrm{K}^{\prime}$	Tr	$\log K^{\prime}$
2 a	10.42	0.375	6.56	0.058	5.43	-0.101	4.61	-0.275	4.05	-0.456
2 b	12.25	0.472	7.32	0.144	6.07	0.001	4.65	-0.264	4.07	-0.448
2 c	13.40	0.523	7.80	0.190	6.34	0.038	4.96	-0.189	4.14	-0.420
2 d	13.52	0.528	7.96	0.204	6.30	0.033	4.98	-0.184	4.17	-0.409
2 e	8.97	0.279	6.23	0.015	5.21	-0.143	4.31	-0.366	3.81	-0.569
$2 f$	9.52	0.318	6.51	0.052	5.47	-0.094	4.56	-0.289	4.02	-0.468
2g	9.61	0.330	6.60	0.063	5.42	-0.103	4.66	-0.261	4.10	-0.436
2h	8.08	0.208	5.76	-0.054	4.93	-0.203	4.33	-0.358	3.97	-0.491
2 i	9.28	0.302	6.46	0.046	5.37	-0.112	4.50	-0.305	4.00	-0.477
5	4.55	-0.326	4.20	-0.490	3.78	-0.606	3.51	-0.788	3.35	-0.933
6	4.36	-0.386	4.05	-0.216	3.73	-0.636	3.50	-0.529	3.36	-0.921
7	5.36	-0.134	4.92	-0.217	4.24	-0.399	3.90	-0.530	3.58	-0.714
Uracil	3.09	-	3.06	-	3.03	-	3.01	-	3.00	-

Table 3. HPLC measured parameters of serie 3^{*}

Comp.	65\% MeOH		70\% MeOH		75\% MeOH		80\% МеОН		85\% MeOH	
	Tr	$\log \mathrm{K}^{\prime}$	Tr	$\log K^{\prime}$	Tr	$\log \mathrm{K}^{\prime}$	Tr	$\log K^{\prime}$	Tr	$\log \mathrm{K}^{\prime}$
3 a	6.34	0.022	5.30	-0.135	4.46	-0.327	3.92	-0.520	3.60	-0.699
3b	7.20	0.124	5.82	-0.045	4.63	-0.277	3.97	-0.497	3.63	-0.678
3c	7.90	0.192	6.10	-0.003	4.86	-0.220	4.08	-0.450	3.68	-0.646
3d	8.08	0.208	6.27	0.021	4.91	-0.208	4.12	-0.434	3.70	-0.633
3 e	6.00	-0.026	4.93	-0.214	4.20	-0.413	3.75	-0.611	3.48	-0.796
3 F	6.34	0.022	5.24	-0.147	4.41	-0.342	3.90	-0.530	3.60	-0.699
3g	6.46	0.037	5.40	-0.117	4.49	-0.318	4.03	-0.470	3.65	-0.665
3h	5.60	-0.090	4.80	-0.246	4.18	-0.421	3.84	-0.561	3.54	-0.745
3 i	6.20	0.003	5.18	-0.160	4.35	-0.361	3.92	-0.520	3.55	-0.738

Table 4. HPLC measured parameters of serie $\mathbf{4}^{\text {a }}$

Comp.	65\% MeOH		70\% MeOH		75\% МеОН		80\% MeOH		85\% MeOH	
	Tr	$\log K^{\prime}$	Tr	$\log \mathrm{K}^{\prime}$	Tr	$\log \mathrm{K}^{\prime}$	Tr	$\log K^{\prime}$	Tr	$\log K^{\prime}$
4a	4.98	-0.213	4.36	-0.373	3.86	-0.564	3.63	-0.688	3.49	-0.788
4b	5.35	-0.136	4.61	-0.296	3.98	-0.504	3.65	-0.674	3.45	-0.824
4 c	5.86	-0.048	4.98	-0.203	4.11	-0.448	3.75	-0.611	3.50	-0.780
4d	5.96	-0.032	4.94	-0.212	4.14	-0.436	3.77	-0.598	3.52	-0.762
4 e	4.76	-0.268	4.21	-0.426	3.75	-0.625	3.50	-0.790	3.36	-0.921
4 f	4.90	-0.233	4.34	-0.379	3.82	-0.585	3.58	-0.723	3.46	-0.815
49	5.10	-0.187	4.40	-0.359	3.83	-0.578	3.63	-0.688	3.55	-0.737
4h	4.51	-0.338	4.12	-0.461	3.70	-0.656	3.53	-0.764	3.51	-0.769
$4 i$	4.86	-0.243	4.32	-0.386	3.81	-0.590	3.56	-0.740	3.50	-0.780

$\% \mathrm{MeOH}$
Figure 1. Semi-log plot of K^{\prime} vs percentage of MeOH in the mobile phase for serie 1 and standards.

$\% \mathrm{MeOH}$
Figure 2. Semi-log plot of K^{\prime} vs percentage of MeOH in the mobile phase for serie 2 and standards.

Flgure 3. Semi-log plot of K^{\prime} vs percentage of MeOH in the mobile phase for serie 3 and standards.

$\% \mathrm{MoOH}$
Figure 4. Semi-log plot of K^{\prime} vs percentage of MeOH in the mobile phase for serie 4 and standards.
Table 6. Correlation equations log K^{\prime}
va $\% \mathrm{MeOH}$ data of serie 2 and standards

Comp.	Intercept $\log \mathrm{K}^{\prime}$ 。	Slope	r^{2}
2 a	2.913	-0.040	0.981
2 b	3.351	-0.045	0.987
2 c	3.427	-0.045	0.988
2d	3.429	-0.045	0.990
2 e	2.958	-0.042	0.996
2f	2.775	-0.038	0.992
2 g	2.684	-0.037	0.989
2 h	2.371	-0.034	0.981
$2 i$	2.754	-0.038	0.994
$2 \mathrm{j}^{\text {a }}$	2.028	-	-
$2 \mathrm{k}^{\text {A }}$	2.827	-	-
5	1.734	-0.031	0.994
6	1.407	-0.027	0.996
7	1.928	-0.031	0.995

Table 5. Correlation equations log K'
vs \% Meoh data of serie 1 and standards

Table 7. Correlation equations log K'
vs $\% \mathrm{MeOH}$ data of serie 3

Comp.	Intercept $\log \mathrm{K}^{\prime}$.	Slope	r^{2}
3 a	2.407	-0.037	0.999
3b	2.808	-0.041	0.997
3 c	2.955	-0.042	0.999
3d	2.993	-0.043	0.999
3 e	2.491	-0.039	1.000
35	2.397	-0.0.36	0.999
3 g	2.330	-0.035	0.998
3h	2.023	-0.032	0.999
3 i	2.404	-0.037	0.998
$3{ }^{\text {a }}$	1.730	-	-
$3 \mathrm{k}^{\text {a }}$	2.417	-	-

a Calculated from equation 3.
(compare $\log K^{\prime}$ 。of $\mathbf{b}, \mathbf{c}, \mathbf{d}$ and of \mathbf{c}, \mathbf{f}) because the field effect of substituents is more important than the resonance effects. ${ }^{15 a}$

If the tabulated π values ${ }^{15 b}$ corresponding to R substituents are compared with $\log K^{\prime}$ values of compounds, h derivatives present an anomalous elution order in the four series, showing less lipophilic character, in all the conditions studied, than expected.

The dependence of interactions among compounds and silanol groups of stationary phase upon the nature of the mobile phase is shown by the fact that the slopes corresponding to the plots \log $\mathrm{K}^{\prime} \mathrm{Vs} \% \mathrm{MeOH}$ are not the same for all compounds in each series; therefore on changing the nature of the mobile phase the elution order of a series of compounds can vary in some cases.

Correlations have been established between $\log \mathrm{K}^{\prime}$ 。 of series 1 and those of series 2,3 and 4 (equations 2, 3 and 4).

$\log K^{\prime}$ of \mathbf{j} and \mathbf{k} derivatives of series 2,3 and 4 , not yet synthesized, have been calculated from equations 2,3 and 4 , respectively.

On the other hand, the elution order found for the three standard compounds employed are in agreement with their values of $\log P$ in the literature. ${ }^{13}$

ACKNOWLEDGMENTS

The authors thank Mrs. Asunción Lorenzo for technical assistance. This work was supported by research grant no FAR-88-0682. from CICYT, Madrid.

REFERENCES

1. Sternbach, L.H. "The Benzodiazepine Story" in "Drug Research", E. Jucker ed., Birkhäuser Wg., Basilea, Vol. 22, 1978, p. 229.
2. Hamor T.A. and Martin I.L. "The Benzodiazepines" in "Progress in Medicinal Chemistry", G.P. Ellis and G.B. West eds., Elsevier Sci. Publ. New York, Vol. 20, 1983, p. 157.
3. Gil S., "1,4-Diazepinas doblemente condensadas como ansiolíticos $5,6,7,8,9,10$-hexahidro- 4 H -pirrolo[1, 2-a] benzo-(b)-tieno[3,2-f][1,4]-diazepinas", An. Real Acad. Farm., 55, 339, 1989.
4. Vega S. and Gil S. "Synthesis of 5,6-dihydro-4H-pyrrolo[1,2-a] thieno[2,3-f][1,4]diazepines", J. Heterocycl. Chem., in press.
5. Doorebons N.J. in "Burger's Medicinal Chemistry", Burger A. ed., Interscience Publishers Inc., New York 2nd ed., 1968, p. 48.
6. Hansch C. and Dunn III W.J. "Linear relationships between lipophilic character and biological activity of drugs", J. Pharm. Sci., 61, 1, 1972.
7. Nieves R., Ochoa C., and Stud M., "High-performance liquid chromatography of $1,2,6$-thiadiazinone 1,1 -dioxides and related pyrazolones: A comparative study of hydrophobicity", J. Liq. Chromatogr., 11, 2349, 1988.
8. Unger S.H. and Chiang G.H., "Octanol-physiological buffer distribution coefficients of lipophilic amines by reversedphase high performance liquid chromatography and theer correlation with biological activity", J. Med. Chem., 24, 262, 1981.
9. Unger S.H., Cook J.R. and Hollemberg J.S., "Simple procedure for determining aqueous partition distribution and ionization coefficients by reversed-phase high-pressure liquid chromatography, J. Pharm. Sci., 67, 1364, 1978.
10. Henry D., Block J.H., Anderson J.L. and Carlson G.R. "Use of high-pressure liquid chromatography for quantitative structure-activity relationship studies of sulfamides and barbiturates", J. Med. Chem., 19, 619, 1976.
11. Giráldez A., Nieves R., Ochoa C., Vara de Rey C., Cenarruzabeitia E., and Lasheras B., Eur. J. Med. Chem., 24, 497, 1989.
12. Wang P.-H. and Lien E.J., "Effects of different buffer species on partition coefficients of drugs used in quantitative structure-activity relationships", J. Pharm. Sci., 69, 662, 1980.
13. Hansch C. "The rational design, mechanistic study and therapeutic applications of chemical compounds" in "Comprehensive Medicinal Chemistry" C.J. Drayton ed., Pergamon Press, Oxford U.K. Vol. 6, 1990, p. 244, 441.
14. New J.S. "The discovery and development of buspirone: A new approach to the treatment of anxiety", Med. Res. Rev., 10, 283, 1990.
15. Hansch, C. and Leo A. "Substituent constants for Correlation Analysis in Chemistry and Biology", John Wiley and Sons, New York, 1979, a) p. 15, b) p. 69.
